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Abstract. This study is motivated by applications to near-wall shear flow (i) as a longitudinal wall shaping
starts, (ii) around a surface obstacle, or (iii) through a pipe bend. All are shown to be governed, at relatively
high flow rates, by essentially the same theoretical problem. This concerns three-dimensional nonlinear longitu-
dinal vortex-like motion under a prescribed displacement which continues to increase with distance downstream.
Symmetry-plane solutions are obtained mainly through forward marching computation followed by analysis of
the far-downstream response. The behaviour far downstream is found to involve either a strengthening attachment
or an increasing three-dimensional separation (lift-off) with no backflow.
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1. Introduction

The motivation for the present study comes from three main fluid-flow applications, described
as (i) to (iii) below, all of which involve the generation of longitudinal vortices in reality and
are found to lead to essentially the same mathematical problem. These are on a near-wall shear
flow: (i) as a longitudinal shaping of the wall begins (there is practical interest in streamwise
corrugated-surface effects ahead of a trailing edge), (ii) around a surface obstacle (e.g., a
roughness element) and (iii) through a pipe bend. More generally, (i) covers the start of any
dent and/or rise in the surface shape, and (ii) covers the flow skirting around the side of any
highly pressurised area.

Background experiments, visualisation, theory and computations for (i) to (iii) can be
found in [1–10]. The generation or mechanisms of strong horseshoe vortices remain largely
unexplained physically, despite numerous computational and other results.

Here we investigate steady laminar three-dimensional motion at large Reynolds numbers.
Section 2 describes the contexts (i) to (iii) in greater detail and their common governing
equations, which correspond to a nonlinear vortex system with an imposed displacement that
amplifies downstream. Solutions are derived numerically in Sections 3 and 4 for symmetry-
plane flow with varying degrees of either increasing or decreasing displacement. The analysis
in Section 5 then concentrates on the flow properties far downstream. Further comments and
a discussion are presented in Section 6, including note of other applications.
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Figure 1. The three main applications that involve the generation of longitudinal vortices: (i) as a longitudinal
wall shaping begins, (ii) around a surface obstacle or pressurised area and (iii) through a pipe bend.

2. The physical problems and governing equations

The three main applications of this work are to (i) the shear flow near the start of a gradual
longitudinal dent or hump on a solid wall (e.g. as on a corrugated surface), (ii) the motion
induced to the side of a surface-mounted obstacle and (iii) the flow through a bent or cornered
pipe. See Figure 1.

The application (i) is described in terms of Cartesian coordinates x∗, y∗, z∗, representing
the streamwise, normal and spanwise directions, respectively, and the corresponding velocity
components u∗, v∗, w∗. The wall shape of concern is assumed to lie deep inside the surface
boundary layer (or other oncoming shear flow) and is so localized that the undisturbed surface
appears flat and of indefinite length (in the x∗-z∗ plane). The fluid appears to be of semi-
infinite extent in the normal direction, with a uniform incident shear flow u∗ = λ∗y∗, where
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λ∗ is the prescribed slope of the incident velocity profile at the surface. The only geometric
length scales of direct relevance are those imposed by the wall shaping itself. We take typical
streamwise and spanwise distances L∗ and l∗ of the wall shaping as the characteristic length
scales for x∗ and z∗, respectively. Similarly, as there is no velocity scale implied directly we
choose the characteristic velocity scale to be λ∗ multiplied by l∗. The associated Reynolds
number based on the near-wall flow field is chosen as Rew ≡ (λ∗l∗) l∗/ν∗, where ν∗ is
the kinematic viscosity of the incompressible fluid, the density of which is ρ∗. Here Rew
is assumed to be large.

Suppose that the wall shaping is closely aligned with the incident shear flow, in the sense
that l∗ � L∗, and that the typical height variation is given by f ∗. Such alignment is expected
to provoke an interaction between the incident shear motion, which emphasises the streamwise
direction, and the most rapid shape variation, which is in the spanwise direction. Close to
the surface, a three-dimensional viscous layer is induced, of y∗ scale (ν∗L∗/λ∗)1/3 from the
inertial/viscous balance of u∗∂/∂x∗ (∼ λ∗y∗/L∗) against ν∗∂2/∂y∗2 (∼ ν∗/y∗2). The layer
is also nonlinear, thus allowing for three-dimensional separations for example, provided that
the viscous y∗ scale derived above is comparable with |f ∗|. Hence the wall shape has f ∗
prescribed as δ∗B(x, z), where δ∗ = (l∗2L∗/Rew)1/3, y∗ = δ∗(y + B), while [u∗, v∗, w∗]
is λ∗δ∗ [

L∗u, δ∗(v + uBx + wBz), l
∗w

]
/L∗ and the dimensional pressure p∗ is written as

ρ∗(λ∗δ∗l∗/L∗)2p. The viscous layer is thin provided that (ν∗L∗/λ∗)1/3 � l∗, i.e., (l∗/L∗) is
much greater than Rew−1. Indeed, all the physical assumptions implicit above are valid as long
as the length-to-width ratio of the wall shaping is much greater than Rew−1, but still small. The
viscous wall layer is then controlled by the nonlinear wide-vortex or slender three-dimensional
boundary-layer system, in nondimensional form,

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (1)

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
u = 0 + ∂2u

∂y2
, (2)

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
w = −∂p

∂z
+ ∂2w

∂y2
, (3)

with the unknown pressure term p(x, z) being independent of Y due to the normal momentum
balance. The streamwise pressure gradient is negligible because of the different velocity scales
u∗, w∗ inferred from the continuity balance. The boundary conditions here are

u ∼ y + B(x, z) as y → ∞, (4)

w ∝ y−1 as y → ∞, (5)

u = v = w = 0 at y = 0, (6)

(u, v,w, p) → (y, 0, 0, 0) as x → −∞, (7)

from matching with the outer flow solution, from the no-slip constraint and from merging with
the undisturbed incident shear flow far upstream at fixed z, respectively. Condition (4) is, in
fact, that of zero outer displacement (in other words, condensed flow [12, 12]) because of the
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Prandtl-transposition coordinate (y + B). In (1) to (7), the scaled velocity components u, v,
w are unknown functions of x, y, z and the scaled induced surface pressure p(x, z) is to be
found, whereas the negative displacement (or forcing) function B(x, z) is prescribed.

The application (ii), to flow beside an obstacle or, more generally, beside an area of typ-
ical dimensional pressure variation π∗ say, stems from [6, 7], the latter paper suggesting it
as an origin for horseshoe vortices. Next to the area of imposed pressure (of length scales
L∗, l∗ again) the largest distinct region has y∗ ∼ l∗ and there an inviscid three-dimensional
linearisation of the incident shear flow applies, with the induced streamwise pressure gradient
again being negligible. The constraints on the motion are that as the surface is approached
the pressure perturbation is prescribed within the pressurised area, and zero around it, while
at sufficiently large distances the pressure perturbation decays to zero. The normal velocity
component is also zero at the surface outside the pressurised area, whereas the streamwise
and spanwise components are nonzero in general, yielding a slip velocity there. The flow
solution [7] there gives the result

∂2B

∂x2
= − 1

π
(PV)

∫ 0

−∞
∂3π̃ (x, η)

∂η3

dη

(z − η)
(8)

for the double streamwise derivative of the scaled streamwise slip velocity B, where (PV)

denotes the principal value and the scaled imposed pressure π̃ (∝ π∗) is supposed to decay
sufficiently fast upstream as x → −∞ for z fixed. Closer to the flat surface the viscous layer
provoked by the induced slip velocity B(x, z) then satisfies (1) to (7) exactly.

The change in role of B, from a prescribed slip velocity produced in the outer inviscid re-
gion to a prescribed displacement effect in the inner viscous sublayer, is the three-dimensional
companion of the change described in [13] and, as there, it arises because of the pre-existing
linear velocity profile as opposed to a uniform profile near the surface. The change is signifi-
cant in that it allows the surface pressure p to adjust and, in particular, any flow reversals are
encountered in a regular fashion rather than with a classical singularity; the same comment
applies to the other applications (i) and (iii). On top of this, for application (ii), the maximum
influence of the imposed pressure π̃ on the flow next to the pressurised area tends to come
at first from positions of enhanced π̃ variation, particularly through high values of the third
derivatives of π̃ in the spanwise direction. However, this is countered by the property that
a double streamwise integration is required to obtain the displacement B itself. This last
property indicates an immediate and substantial historical influence in the motion (ii), due
to (8), an influence which is absent in the other two applications (although distinct histori-
cal effects common to all three applications are discussed later). These enhanced spanwise
and streamwise influences, in the pressure-feedback mechanism from the pressurised area,
are three-dimensional features which are distinct from those examined previously and arise
essentially from the near-alignment of the incident near-surface shearing motion with the
longitudinal edge of the pressurised area.

When the pressurised area is a low obstacle on the surface, [7] shows how π̃(x, z) is
determined by the complex flow behaviour on the obstacle; see also [6] and Appendix A. The
forcing B then follows from (8). Below we will examine representative B functions which
typically grow linearly far downstream and so allow for the effect of the derivatives in (8).

The application (iii) is very similar to (i). This is due to equations (1) to (3) applying
in a relatively thin layer near the solid surface, which is the inner wall of the pipe in the
case of (iii). With x defined as the axial distance down the pipe, (4) and (5) follow from
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applying the Prandtl transposition again to the pipe bend. Periodicity in z, i.e., around the pipe
cross-section, is required however here.

All the applications, then, essentially yield the same problem (1) to (7). The negligible
influence of the streamwise pressure gradient in (2), e.g., due to the slender wall shape, causes
the wall-layer system to be parabolic in the positive streamwise direction provided that u
remains positive. The following work addresses the flow properties in a symmetry plane. The
physical relevance of this is clear in the applications (i) and (iii), whereas for (ii) it serves
more as a guideline to the possible realistic flow features.

3. Symmetry-plane analysis

For guidance, we examine the solution close to a symmetry line. Thus, for small z, the
expressions

[
u, v,w, p,B

]=
[
U(x, y), V (x, y), zW(x, y),

z2

2
P(x),A(x) + z2

2
A2(x)

]
+ . . . (9)

are expected, where A(x) and A2(x) etc. are known, with the additional property that

A(x) ∼ σx as x → ∞, (10)

for a given constant σ . The property (10) corresponds to an imposed displacement (a corruga-
tion, a roughness-induced slip via (8) or a pipe bend) with amplitude that increases indefinitely
downstream. Substituting in (1) to (7) then yields the symmetry-line equations

∂u

∂x
+ ∂V

∂y
+ W = 0, (11)

U
∂u

∂x
+ V

∂U

∂y
= ∂2U

∂y2
, (12)

U
∂W

∂x
+ V

∂W

∂y
+ W 2 = −P(x) + ∂2W

∂y2
, (13)

to leading order, with boundary conditions

(U, V,W,P ) = (y, 0, 0, 0) at x � 0, (14)

(U, V,W) = (0, 0, 0) at y = 0, (15)

(U,W) ∼
(
y + A(x),O(y−1)

)
as y → ∞. (16)

Despite the simplifications, the solution to the nonlinear symmetry-line problem (11) to
(16) must still be found numerically. The parabolic nature of the governing equations enables
the solution to be marched forward in the x-direction (so long as no flow reversal occurs) and,
here, a quasi-linear iterative process is used to determine the values at successive streamwise
locations. Resolving the flow field is made difficult by the linearly growing slip velocity (16),
which necessitates a large grid in the y-direction, and the absence of a streamwise pressure
gradient, which creates only a loose coupling between the slip velocity and unknown pressure.



10 N.C. Ovenden and F.T. Smith

Figure 2. Spanwise skin friction for the case σ = +0·5, where the y → ∞ boundary condition is imposed at
different maximum y values. For each plot shown this boundary condition is imposed at (a) ymax = 15·7, (b)
ymax = 29·5, (c) ymax = 47·8, (d) ymax = 71·2, (e) ymax = 98·0 and (f) ymax = 115·2. The arrow shows the
trend of increasing ymax.

Figure 3. Streamwise skin friction on the symmetry line for different values of σ as labelled.

So, a stretched grid y = γ e!ȳ − γ is employed to capture the algebraic decay of W and to
enable (16) to be imposed at a suitably large y. Some solutions are strongly dependent on
grid height ymax and grid spacing; the parameters γ and ! are used to control near-wall and
far-field grid spacings.
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Figure 4. The symmetry-line pressure contribution P(x), which dictates the induced spanwise pressure gradient,
for different values of σ as labelled.

Figure 5. The symmetry-line spanwise skin friction behaviour for different values of σ as labelled.

4. Numerical results

The numerical scheme was used with the slip-velocity

A(x) = σx
(

1 − e−x2
)
,

which provides a necessary smooth start in the vicinity of x = 0 (see Appendix B) but
tends rapidly to the required asymptote (10). Numerical results for various values of σ are
presented in Figures 2 to 6. The results contain plots of the scaled streamwise skin friction
τx = ∂U/∂y

∣∣
y=0, the scaled spanwise skin friction τz = ∂W/∂y

∣∣
y=0, the pressure P(x) and

the downstream streamwise and spanwise velocity profiles. Grid checks show that results for
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Figure 6. Downstream streamwise and spanwise velocity profiles computed on the symmetry line at x = 12 for
(a) σ = +0·5 and (b) σ = −1·5.

the larger values of σ positive are strongly dependent on ymax. The effect can be observed in
Figure 2, where τz is computed for σ = +0·5 with the y → ∞ condition (16) imposed at
different ymax values. For smaller values of ymax the near-wall spanwise velocity appears to be
increasing in strength far downstream. However, as ymax is increased, τz seems to approach a
constant value, in agreement with the asymptotic analysis of the next section. By adjusting the
grid parameters γ and ! to make the grid height as large as computationally possible (whilst
maintaining a fine enough grid at the wall), these grid effects are minimised in all the other
results presented.

For the cases where σ > 0, the initial smooth growth of the slip velocity is unable to
prevent the almost immediate creation of a sharp favourable pressure gradient in the direction
of large |z|. This pressure gradient, in turn, induces an equally large spanwise acceleration
of near-wall fluid outwards away from the symmetry line at z = 0, a feature observable
in Figure 5. As x increases further and A(x) attains its asymptotic form (10), the pressure
gradient weakens slightly before appearing to level out at an almost constant value as the
flow proceeds further downstream. As mentioned above, Figure 5 indicates that τz also tends
to approach a constant value. The streamwise skin friction in Figure 3 rises steadily as the
slip velocity increases, leading to a strongly attached velocity profile downstream as expected
(Figure 6). The growth of the streamwise skin friction appears slightly slower than linear.

When σ < 0 we should perhaps expect reversal of the near-wall fluid downstream. The
dependence on ymax is much less here, incidentally, and this can be explained by comparing
(see Section 6) the asymptotic structures of both attached and separated cases derived in the
next section. In accordance with linear theory (Appendix B), close to x = 0 a sharp adverse
pressure gradient in the direction of large |z| appears, which pulls fluid inwards spanwise
towards the symmetry line. Together with that, the streamwise skin friction in Figure 3 begins
to drop smoothly as if anticipating separation. However, this initial behaviour does not persist
far downstream, as within an O(1) distance from the origin, fully nonlinear effects for the
larger |σ | cases change the character of the flow response entirely. For instance, the original
sharp adverse pressure gradient weakens sharply before becoming instead a modest favourable
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Figure 7. Sketch of the flow structure far downstream with the various flow regions labelled.

pressure gradient in the direction of large |z|. This favourable pressure gradient continues far
downstream and abruptly decelerates the spanwise influx of fluid towards the symmetry line.
For the σ = −1·0 and −1·5 cases, the deceleration is so strong that eventually the spanwise
flow reverses close to the surface (Figure 5) and near-wall fluid begins to be expelled outwards
away from the symmetry line. The streamwise skin friction in Figure 3 at this point stops
decreasing and even begins to rise again at larger values of x, suggesting that streamwise flow
reversal never occurs downstream, despite the linearly decreasing slip velocity; separation,
in the sense of lift-off, does occur however. For the strongest separated case, σ = −1·5, the
streamwise velocity in Figure 6 starts to take the form of an increasingly detached sharply
inflected profile that nevertheless has no flow reversal at all. The respective spanwise velocity
profile W with its two changes in sign, and an examination of the vertical velocity (not shown
here), suggest the formation of vortical structures lifting off downstream for the strong σ < 0
cases.

5. Far-downstream analysis

The flow structure far downstream is assumed initially to consist of two regions: an outer
inviscid region (region 1) and an inner viscous region below (region 2). A diagram is shown
in Figure 7(a).

Region 1 is assumed to grow in height linearly as x → ∞ in order to balance the two
components of the outer boundary condition U ∼ y + σx. So, we change coordinates from
(x, y) to (x, η), where η = y/x, and write

[U,V,W,P ] = [
xU0(η), xV0(η),W0(η), q0

] + . . . . (17)



14 N.C. Ovenden and F.T. Smith

The leading-order powers of x are chosen to fit condition (16) and to balance terms in (11)
to (13); thus we ensure a fully three-dimensional response. Substitution in the governing
equations produces the following inviscid system to leading order,

U0(η) − ηU ′
0(η) + V ′

0(η) + W0(η) = 0, (18)

U0(η)
[
U0(η) − ηU ′

0(η)
] + V0(η)U

′
0(η) = 0, (19)

and

−ηU0(η)W
′
0(η) + V0(η)W

′
0(η) + W 2

0 (η) = −q0. (20)

The no-slip conditions from (15) are to be satisfied in region 2 below. In region 1, only the
outer conditions (16), along with the no-penetration condition for V0 at the surface from (15)
apply, requiring

(U0,W0) ∼ (η + σ, 0) as η → ∞, (21)

and

V0 = 0 at η = 0. (22)

To solve, first we eliminate V0 and W0 using (18) and (19) to express them in terms of U0.
Thus,

V0 = −U 2
0

U ′
0

+ ηU0 and W0 = −U 2
0U

′′
0

(U ′
0)

2
. (23)

Then, substitution in (20) and putting H(t) = dU0/dη, t = 1/U0 (assuming U0 is a monoton-
ically increasing function of η), gives the equation

d2H

dt2
+ q0H = 0. (24)

Hence, there is an eigenvalue problem to solve for the pressure term q0. Any solution for
q0 > 0, which satisfies (21), has the restriction that U0 must tend to a constant at η = 0,
yielding V0 �= 0 at η = 0 from (23) and violating (22). Therefore, q0 � 0. Applying (21) then
leads to

U ′
0(η) = cosh

( |q0|1/2

U0(η)

)
, (25)

as the solution to region 1, with a single arbitrary parameter |q0|.
5.1. INCREASINGLY ATTACHED: σ > 0

For the case of increasingly attached flow, the pressure term q0 can be fixed uniquely. The
no-penetration condition (22) requires from (23) that U0 → 0 as η → 0, other forms being
unmatchable. Hence, q0 is determined by the integral equation

∫ ∞

0


1 − 1

cosh
(

|q0|1/2

U0(η)

)

 dU0 = σ. (25)
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Figure 8. Asymptotic profiles U0(η) and W0(η) predicted for the σ = +0·5 case.

Calculating the solution to this integral equation numerically for σ = 0·2 yields the value
q0 = −0·033 and for σ = 0·5 yields the value q0 = −0·20 to two significant figures, which
agree encouragingly with the forward marched solution of the pressure term (Figure 4).

Also, from (23) and (25),

W0 = |q0|1/2 tanh

( |q0|1/2

U0

)
. (27)

Figure 8 shows the U0 and W0 asymptotic profiles calculated for σ = 0·5.
The viscous region 2 underneath can be shown [14, Chapter 7] to have constant thickness,

y ∼ O(1), with the expansions

[U,V,W,P ] =
[

x

log x
û(y) , v̂(y) , ŵ(y) ,−q0

]
+ . . . . (28)

Here, the secondary velocities V and W dominate the flow field, the streamwise leading-order
flow being smaller by a factor O(1/ log x). From substitution of (28) in (11) and (13), V and
W satisfy the well-known equations governing steady viscous flow approaching a forward
stagnation point [15, pp. 231–233]. Moreover, the leading-order streamwise velocity predicts
that the streamwise skin friction τx grows at a slower rate than linear, namely as O(x/ log x)
at large x, in agreement with the behaviour observed in the numerics (see Figure 3).

5.2. INCREASINGLY SEPARATED: σ < 0

The two-layered structure above fails in the case σ < 0. Instead, four zones are involved. A
sketch of the new structure is given in Figure 7(b).

In region 1, where η = y/(|σ |x) > 1, consideration of (25) implies that q0 = 0 and the
solution becomes two-dimensional to leading order,

[U,V,W,P ] = [ |σ |x(η − 1), |σ |2x(η − 1), 0, 0
] + . . . . (29)

Thus, both the pressure and spanwise flow decay as x → ∞, unlike in the increasingly
attached case where they remain constant far downstream.
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As the position y =|σ |x is approached, there is a dramatic change in vorticity between the
inviscid solutions in regions 1 and 3, which is smoothed out by the action of viscous forces
[16, 17] within region 2. There y = |σ |x + x1/3ζ , with ζ ∼ O(1) and

[U,V,W,P ] = [
x1/3F(ζ ), |σ |x1/3F(ζ ) + x−1/3G(ζ), x−2/3H(ζ ), x−4/3q̂

] + . . . . (30)

Substitution in (11) to (13) then produces the system

1

3

[
F − ζF ′] + G′ + H = 0,

F

3

[
F − ζF ′] + GF ′ = F ′′,

−2

3
FH − 1

3
ζFH ′ + GH ′ + H 2 = −q̂ + H ′′,

(31)

with the upper condition

F(ζ ) ∼ ζ as ζ → ∞, (32)

to match to the solution in region 1. The lower condition as suggested by the detailed analysis
of [14, Chapter 7] is

[F(ζ ),G(ζ ),H(ζ )] ∼
[

3|q̂|1/2

log |ζ | ,−|q̂|1/2|ζ |,−|q̂|1/2

]
+ . . . , (33)

indicating that the G-term overtakes the F -term in the expansion for V (30) inside the shear
layer. So the streamwise velocity U , on approaching region 3 becomes negligible by a fac-
tor O(1/ log x), resulting in a flow field dominated below the shear layer by the secondary
velocities V and W .

In the second inviscid region, region 3, the domain is 0 < η < 1 and the expansions

[U,V,W,P ] =
[
x1/3

log x
Ũ(η), |σ |x1/3Ṽ (η), x−2/3W̃ (η), x−4/3q̂

]
+ . . . (34)

hold. These expansions, when substituted in (11) to (13), confirm that the secondary velocities
V and W just dominate the solution here, leaving the balances

Ṽ ′ + W̃ = 0, Ṽ W̃ ′ + W̃ 2 = |q̂|. (35)

The matching to region 2 above requires Ṽ (η) ∼ +|q̂|1/2(η − 1) and W̃ (η) ∼ −|q̂|1/2 as
η → 1−; the solution obtained has

Ṽ (η) = −|q̂|1/2

π
sin(πη), W̃ (η) = |q̂|1/2 cos(πη). (36)

This predicts one change of sign occurring in the spanwise velocity, which is in keeping with
that observed in the downstream numerics (Figure 6); any other change of sign presumably
occurs either in the shear layer or in the higher-order solutions to region 1.

On approaching the wall at η = 0+, the flow solution (36) takes the form

Ṽ ∼ −|q̂|1/2η and W̃ ∼ |q̂|1/2; (37)

fluid is now being pushed downwards and outwards from the symmetry line. Viscous forces
become significant in a wall layer of thickness O(x1/3), defining region 4. There, as in the
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Figure 9. Sketch indicative of the predicted longitudinal vortex flow downstream, when the constant σ is negative.
(i) Near symmetry plane z = 0, the velocity vectors in the cross plane (solid-headed arrows) and in the x-direction
(open-headed arrows): note that all are directed forward in x. (ii) More widely in z, the implied particle paths,
especially between the displaced shear flow and the wall. All particles move forward in x. The size of the vortex
in the cross-section increases linearly with downstream distance x (indicated by the dashed lines).

attached case, the equations modelling flow towards a forward stagnation point [15, pp. 231–
233] apply. Regarding the behaviour of the streamwise velocity below the shear layer, U
remains positive and satisfies a linear equation in region 4 which, under the action of viscosity,
reduces the velocity smoothly to zero at the wall.

6. Further comments

Connections between the asymptotics (Section 5) and numerics (Section 4) need mention-
ing first. For increasingly attached flows, where the slip velocity increases linearly, there is
encouraging agreement between the computations and the downstream asymptotic structure.
Difficulties due to strong grid dependence (Section 4) prevent further comparisons involving
cases where σ > 0·5. The cause of these difficulties is evident in the asymptotic structure,
where clearly a grid height ymax � O(σx) is required to satisfy the outer boundary condition
(16), with the downstream asymptote (10), to any suitable degree of accuracy. In any case, the
analysis indicates that far downstream a strongly attached streamwise flow is formed which,
in turn, generates a constant favourable spanwise pressure gradient and a constant spanwise
mass flux outwards from the symmetry line. Historical effects on the flow are dissipated in
higher-order eigensolutions.

In the increasingly separated cases, where the slip velocity decreases linearly, agreement
between the asymptotic structure and the computations exists, although it is less obvious.
Indeed, the asymptotics predict less dependence on grid height in this case due to the fact that
the outer boundary condition downstream, given by (16) with (10), is satisfied to leading order
directly above the shear layer (y ∼ |σ |x); in other words, an accurate numerical result can be
expected if the grid height ymax lies above this shear layer for all resolved x. The computations
fail to resolve the flow sufficiently far downstream for the expansion terms in the asymptotic
structure of Section 5 to become significantly different in magnitude. For instance, the factor
O(1/ log x) makes numerical confirmation of the asymptotics a challenging future problem.
Again, questions remain on the uniqueness of the pressure and the effects of flow history.
The absence of backflow in this three-dimensional separation or lift-off is, however, most
noteworthy.

Horseshoe Vortices. The numerical and asymptotic approaches together tend to confirm
the existence of a complex flow structure far downstream, with the formation of a pair of
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horseshoe-type vortices (vortical structures) being a likely feature of the flow. This is evident
both in the numerical description at the end of Section 4 and in the asymptotic solution for
region 3, in Section 5, which generates a pair of linearly growing horseshoe-type vortices
between the wall and the lifting-off shear layer. Of course this is tentative, as only a symmetry-
line solution has been explored in the present work. A further numerical computation for z
of O(1) beyond the symmetry line would be required to fully confirm their existence (see
Figure 9). Meanwhile, it is worth noting again the applications (Section 2 and Figure 1) to
the three main configurations given in the title of this paper, for each of which downstream
horseshoe vortex generation is predicted. On the application (ii), examples of other pressurised
configurations concern flow around an entire three-dimensional obstacle, motion beside a
floating body, branching flow, motion induced by a suction or injection hole and two-fluid
configurations such as at the side of a lake. The flow within the pressurised area may be com-
plex, but the nature of the relation (8) allows fairly representative forcings B to be deduced.
The result (8) also matches back to [6]’s quasi-planar work (their Equation 5.7d) upstream
around an obstacle. On the application (iii), the ability to control the strength of the horseshoe
vortices, through the design of a pipe junction for example, is of great interest. This control
may be possible if the leading-order pressure contribution q̂x−4/3 present far downstream is
not determined uniquely for the separated σ < 0 cases (unlike for the cases σ > 0).
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Appendix A: Further points on flow due to an obstacle

If the obstacle or roughness has steep edges [6] with an extensive flat top, then the flow over
it is of most interest at the spanwise outermost edge where there is near-alignment with the
incident shear motion. The flow above this edge is nonlinear and two-layered in the normal di-
rection y∗, for the application (ii), whereas on the flat top surface the flow is single-layered but
is aware only of the change in surface height, not of the detailed edge shape. The outer layer
has a characteristic pressure level π∗ and the spanwise velocity w∗ is of order (π∗/ρ∗)1/2.
So conservation of mass suggests that u∗ is represented by (π∗/ρ∗)1/2L∗/ l∗. Comparing this
with the representative value λ∗y∗ due to the incident shear flow fixes the y∗ thickness scale
as (π∗/ρ∗)1/2L∗/(l∗λ∗). The same scale is expected for the typical roughness height F ∗ at the
steep edge, because of nonlinear interaction, and so the typical streamwise slope of the edge
is given by

F ∗

L∗ ∼
(
l∗

L∗

)5/6

Re−1/6
w . (A1)

The streamwise slope thus lies between the orders Re−1/6
w and Re−1

w here. Similarly, the typical
spanwise slope F ∗/ l∗, which is of the order (l∗Rew/L∗)−1/6 from (A1), lies between the
orders unity and Re−1/6

w .
The governing equations in the outer layer are (1) to (3) again but without the viscous

terms, and π̃ replaces p, while the boundary conditions are in effect u ∼ y +F(x, z), w → 0
at large positive y, along with v → 0 as y → 0 for attached motion. The scaling behind
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y, F here is as in A1. The above governing equations and constraints, coupled with upstream
starting conditions on u, v and w, are to determine the pressure variation π̃ (x, z) (and hence
B from (8)). As a consequence of the solution behaviour as y → 0+ (which involves square
roots), the inner viscous nonlinear layer is quasi-planar in the cross-plane; see in [7]. The
streamwise velocity responds linearly and passively. Again, at larger |z| values the outer and
inner layers merge into one on top of the roughness [7], while outside the edge there is no
nonlinear upstream influence apart from that from π̃ via (8) and that produced sideways by
momentum spillover downstream [6, 7].

A further discussion of the edge flow solutions that determine π̃ can be found in [6, 7] or
is available from the authors. An approximation for a nearly straight edge is

π̃ = −1

2
β2F 2, A2)

where β is the angle between the tangent to the roughness planform and the incident stream
direction. This expression matches with properties in [6] for lower roughness heights. Clearly
the major variation in π̃ occurs within the edge region according to (A2). This quasi-planar so-
lution can be extended to allow for separated eddy flow further downstream (of the roughness)
by regarding F as F -effective, defined as the edge height whenever the motion is attached but
the eddy height whenever the motion is separated [6, 12]. Here F -effective could be taken
to be nearly uniform, consistent with a nearly uniform eddy pressure from (A2). Marginal
stability is also mentioned in [7] in connection with these flows.

Appendix B: Linearised analysis

At positions (such as near x = 0) where the boundary-layer displacement on a symmetry line
−A(x) is small, a linearised analysis of the system (11) to (16) can be performed. Writing
A(x) = εa(x), where ε � 1, the analysis yields for the pressure contribution P(x) and the
surface shears τx = ∂U/∂y

∣∣
y=0 and τz = ∂W/∂y

∣∣
y=0 the solutions

P(x) = ε .1

∫ x

−∞
a′′(ξ)(x − ξ)−2/3dξ,

τx − 1 = ε .2

∫ x

−∞
a′(ξ)(x − ξ)−1/3dξ,

τz = ε .3

∫ x

−∞
a′′(ξ)(x − ξ)−1/3dξ,

where the constants

[.1,.2,.3] =
[
− 32/3

02(1/3)
,

31/3

02(2/3)
− 2π 3−1/6

0(2/3)02(1/3)
,

2π 3−1/6

02(1/3)0(2/3)

]
.

The linearised solution indicates that unless a smooth start with a′′(x) continuous is imposed,
singular behaviour in both P(x) and τz of the form x−2/3 and x−1/3 is predicted.

If a(x) ∼ σx as x → ∞, then the flow field will become fully nonlinear further down-
stream where x = ε−3/2X with X of O(1). A, U , V , W , P and y are rescaled by εm,
m = −1/2, −1/2, 1/2, 1, 2 and −1/2 respectively and the governing system becomes (11) to
(13) with boundary conditions (14) to (16); A(x) is already in its asymptotic form (10).
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